Verapamil downregulates iron uptake and upregulates divalent metal transporter 1 expression in H9C2 cardiomyocytes

维拉帕米下调 H9C2 心肌细胞铁吸收并上调二价金属转运蛋白 1 表达

阅读:7
作者:Li-Rong Jiang, Meng-Qi Shen, Yu-Xin Bao, Zhong-Ming Qian

Abstract

Belgrade rats have a defect in divalent metal transport 1 (DMT1) with a reduced heart iron, indicating that DMT1 plays a physiological role in non-transferrin-bound iron (NTBI) uptake by cardiomyocytes. However, L-type voltage-dependent Ca2+ channel (LVDCC) blockers were recently demonstrated to significantly reduce NTBI uptake by cardiomyocytes, implying that LVDCC plays a dominant role in NTBI uptake by cardiomyocytes under iron-overloaded conditions. These findings led us to hypothesize that the LVDCC blocker-induced reduction in NTBI uptake might result not only from the inhibition of LVDCC-mediated NTBI uptake but also from the suppression of DMT1-mediated NTBI uptake. We therefore investigated the effects of the LVDCC blocker verapamil on NTBI uptake as well as DMT1 expression in H9C2 cells by the measurement of radio-labeled 55 Fe(II), reverse transcription polymerase chain reaction (RT-PCR) and western blot analysis. We demonstrated that verapamil induced a significant reduction in NTBI uptake by H9C2 cells but also unexpectedly a remarkable increase rather than decrease in the expression of DMT1 mRNA and protein in H9C2 cells. Our findings imply that the verapamil-induced reduction in NTBI uptake by H9C2 cells is not associated with DMT1 and also indicate that verapamil stimulates rather than inhibits DMT1 expression and DMT1-mediated iron uptake by heart cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。