Protective effects of cell permeable Tat-PIM2 protein on oxidative stress induced dopaminergic neuronal cell death

细胞通透性Tat-PIM2蛋白对氧化应激诱导的多巴胺能神经元细胞死亡的保护作用

阅读:5
作者:Min Jea Shin, Won Sik Eum, Gi Soo Youn, Jung Hwan Park, Hyeon Ji Yeo, Eun Ji Yeo, Hyun Jung Kwon, Eun Jeong Sohn, Lee Re Lee, Na Yeon Kim, Su Yeon Kwon, Su Min Kim, Hyo Young Jung, Duk-Soo Kim, Sung-Woo Cho, Oh-Shin Kwon, Dae Won Kim, Soo Young Choi

Background

Oxidative stress is considered as one of the main causes of Parkinson's disease (PD), however the exact etiology of PD is still unknown. Although it is known that Proviral Integration Moloney-2 (PIM2) promotes cell survival by its ability to inhibit formation of reactive oxygen species (ROS) in the brain, the precise functional role of PIM2 in PD has not been fully studied yet.

Conclusion

These results indicated that Tat-PIM2 markedly inhibited the loss of dopaminergic neurons by reducing ROS damage, suggesting that Tat-PIM2 might be a suitable therapeutic agent for PD.

Methods

Transduction of Tat-PIM2 into SH-SY5Y cells and apoptotic signaling pathways were determined by Western blot analysis. Intracellular ROS production and DNA damage was confirmed by DCF-DA and TUNEL staining. Cell viability was determined by MTT assay. PD animal model was induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and protective effects were examined using immunohistochemistry.

Objective

We investigated the protective effect of PIM2 against apoptosis of dopaminergic neuronal cells caused by oxidative stress-induced ROS damage by using the cell permeable Tat-PIM2 fusion protein in vitro and in vivo.

Results

Transduced Tat-PIM2 inhibited the apoptotic caspase signaling and reduced the production of ROS induced by 1-methyl-4-phenylpyridinium (MPP+) in SH-SY5Y cells. Furthermore, we confirmed that Tat-PIM2 transduced into the substantia nigra (SN) region through the blood-brain barrier and this protein protected the Tyrosine hydroxylase-positive cells by observation of immunohistostaining. Tat-PIM2 also regulated antioxidant biomolecules such as SOD1, catalase, 4-HNE, and 8-OHdG which reduce the formation of ROS in the MPTP-induced PD mouse model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。