A fluorescent chemical probe CDy9 selectively stains and enables the isolation of live naïve mouse embryonic stem cells

荧光化学探针 CDy9 可选择性染色并分离活的幼稚小鼠胚胎干细胞

阅读:5
作者:Seung-Ju Cho, Keun-Tae Kim, Jong-Soo Kim, Ok-Seon Kwon, Young-Hyun Go, Nam-Young Kang, Haejeong Heo, Mi-Rang Kim, Dong Wook Han, Sung-Hwan Moon, Young-Tae Chang, Hyuk-Jin Cha

Abstract

Human and mouse embryonic stem cells (ESCs) differ in terms of their pluripotency status, i.e., naïve vs. primed. This affects various biological properties and leads to several technical hurdles for future clinical applications, such as difficulties in chimera formation, single-cell passaging, and gene editing. In terms of generating functional human tissues and organs via mammalian interspecies chimerism, a fluorescent chemical probe that specifically labels naïve ESCs would help to isolate these cells and monitor their conversion. This study demonstrates that the fluorescent chemical probe compound of designation yellow 9 (CDy9) selectively stains naïve, but not primed, mouse ESCs (mESCs). CDy9 entered cells via Slc13a5, a highly expressed membrane transporter in naïve mESCs. Fluorescence-based cell sorting based on CDy9 staining successfully separated naïve mESCs from primed mESCs. Mice generated using CDy9+ cells isolated during the conversion of mouse epiblast stem cells into naïve mESCs exhibited coat color chimerism. Furthermore, CDy9 specifically stained cells in the inner cell mass of mouse embryos. These findings suggest that CDy9 is a useful tool to isolate functional naïve mESCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。