Deep learning-enhanced R-loop prediction provides mechanistic implications for repeat expansion diseases

深度学习增强的 R 环预测为重复扩增疾病提供了机制意义

阅读:5
作者:Jiyun Hu, Zetong Xing, Hongbing Yang, Yongli Zhou, Liufei Guo, Xianhong Zhang, Longsheng Xu, Qiong Liu, Jing Ye, Xiaoming Zhong, Jixin Wang, Ruoyao Lin, Erping Long, Jiewei Jiang, Liang Chen, Yongcheng Pan, Lang He, Jia-Yu Chen

Abstract

R-loops play diverse functional roles, but controversial genomic localization of R-loops have emerged from experimental approaches, posing significant challenges for R-loop research. The development and application of an accurate computational tool for studying human R-loops remains an unmet need. Here, we introduce DeepER, a deep learning-enhanced R-loop prediction tool. DeepER showcases outstanding performance compared to existing tools, facilitating accurate genome-wide annotation of R-loops and a deeper understanding of the position- and context-dependent effects of nucleotide composition on R-loop formation. DeepER also unveils a strong association between certain tandem repeats and R-loop formation, opening a new avenue for understanding the mechanisms underlying some repeat expansion diseases. To facilitate broader utilization, we have developed a user-friendly web server as an integral component of R-loopBase. We anticipate that DeepER will find extensive applications in the field of R-loop research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。