Experience-dependent plasticity of excitatory and inhibitory intertectal inputs in Xenopus tadpoles

非洲爪蟾蝌蚪兴奋性和抑制性间质输入的经验依赖性可塑性

阅读:7
作者:Abigail C Gambrill, Regina Faulkner, Hollis T Cline

Abstract

Communication between optic tecta/superior colliculi is thought to be required for sensorimotor behaviors by comparing inputs across the midline, however the development of and the role of visual experience in the function and plasticity of intertectal connections are unclear. We combined neuronal tracing, in vivo time-lapse imaging, and electrophysiology to characterize the structural and functional development of intertectal axons and synapses in Xenopus tadpole optic tectum. We find that intertectal connections are established early during optic tectal circuit development. We determined the neurotransmitter identity of intertectal neurons using both rabies virus-mediated tracing combined with post-hoc immunohistochemistry, and electrophysiology. Excitatory and inhibitory intertectal neuronal somata are similarly distributed throughout the tectum. Excitatory and inhibitory intertectal axons are structurally similar and elaborate broadly in the contralateral tectum. We demonstrate that intertectal and retinotectal axons converge onto tectal neurons by recording postsynaptic currents after stimulating intertectal and retinotectal inputs. Cutting the intertectal commissure removes synaptic responses to contralateral tectal stimulation. In vivo time-lapse imaging demonstrated that visual experience drives plasticity in intertectal bouton size and dynamics. Finally, visual experience coordinately drives the maturation of excitatory and inhibitory intertectal inputs by increasing AMPA- and GABA-receptor mediated currents, comparable to experience-dependent maturation of retinotectal inputs. These data indicate that visual experience regulates plasticity of excitatory and inhibitory intertectal inputs, maintaining the excitatory: inhibitory ratio of intertectal input. These studies place intertectal inputs as key players in tectal circuit development and suggest that they may play a role in sensory information processing critical to sensorimotor behaviors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。