Prevention and cure of murine C. difficile infection by a Lachnospiraceae strain

毛螺菌科菌株对小鼠艰难梭菌感染的防治

阅读:7
作者:Juan Noriega Tejada, William A Walters, Yanling Wang, Melissa Kordahi, Benoit Chassaing, Joseph Pickard, Gabriel Nunez, Ruth Ley, Andrew T Gewirtz

Abstract

We sought to better understand how intestinal microbiota confer protection against Clostridioides difficile (C. difficile) infection (CDI). We utilized gnotobiotic altered Schaedler flora (ASF) mice, which lack the abnormalities of germfree (GF) mice as well as the complexity and heterogeneity of antibiotic-treated mice. Like GF mice, ASF mice were highly prone to rapid lethal CDI, without antibiotics, while very low infectious doses resulted in chronic CDI. Administering such chronic CDI mice an undefined preparation of Clostridia lowered C. difficile levels by several logs. Importantly, such resolution of CDI was associated with colonization of Lachnospiraceae. Fractionation of the Clostridia population to enrich for Lachnospiraceae led to the appreciation that its CDI-impeding property strongly associated with a specific Lachnospiraceae strain, namely uncultured bacteria and archaea (UBA) 3401. UBA3401 was recalcitrant to being propagated as a pure culture but could be maintained in ASF mice, wherein it comprised up to about 50% of the intestinal microbiota, which was sufficient to generate a high-quality genomic sequence of this bacterium. Sequence analysis and ex vivo study of UBA3401 indicated that it had the ability to secrete substance(s) that directly impeded C. difficile growth. Moreover, in vivo administration of UBA3401/ASF feces provided strong protection to C. difficile challenge. Thus, UBA3401 may contribute to and/or provide a means to study microbiota-mediated CDI resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。