Long-chain polyphosphates inhibit type I interferon signaling and augment LPS-induced cytokine secretion in human leukocytes

长链多磷酸盐抑制 I 型干扰素信号传导并增强 LPS 诱导的人类白细胞细胞因子分泌

阅读:6
作者:Anniina Pirttiniemi, Krishna Adeshara, Natalie Happonen, Elisabet Einarsdottir, Shintaro Katayama, Hanne Salmenkari, Sohvi Hörkkö, Juha Kere, Per-Henrik Groop, Markku Lehto

Abstract

Inorganic polyphosphates are evolutionarily conserved bioactive phosphate polymers found as various chain lengths in all living organisms. In mammals, polyphosphates play a vital role in the regulation of cellular metabolism, coagulation, and inflammation. Long-chain polyphosphates are found along with endotoxins in pathogenic gram-negative bacteria and can participate in bacterial virulence. We aimed to investigate whether exogenously administered polyphosphates modulate human leukocyte function in vitro by treating the cells with 3 different chain lengths of polyphosphates (P14, P100, and P700). The long-chain polyphosphates, P700, had a remarkable capacity to downregulate type I interferon signaling dose dependently in THP1-Dual cells while only a slight elevation could be observed in the NF-κB pathway with the highest dose of P700. P700 treatment decreased lipopolysaccharide-induced IFNβ transcription and secretion, reduced STAT1 phosphorylation, and downregulated subsequent interferon-stimulated gene expression in primary human peripheral blood mononuclear cells. P700 also augmented lipopolysaccharide-induced secretion of IL-1α, IL-1β, IL-4, IL-5, IL-10, and IFNγ. Furthermore, P700 has previously been reported to increase the phosphorylation of several intracellular signaling mediators, such as AKT, mTOR, ERK, p38, GSK3α/β, HSP27, and JNK pathway components, which was supported by our findings. Taken together, these observations demonstrate the extensive modulatory effects P700 has on cytokine signaling and the inhibitory effects specifically targeted to type I interferon signaling in human leukocytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。