Exercise Promotes the Osteoinduction of HA/β-TCP Biomaterials via the Wnt Signaling Pathway

运动通过 Wnt 信号通路促进 HA/β-TCP 生物材料的骨诱导

阅读:8
作者:Lijia Cheng, Ahmad Taha Khalaf, Tianchang Lin, Ling Ran, Zheng Shi, Jun Wan, Xin Zhou, Liang Zou

Conclusion

Weight-bearing exercise can promote the bone and bone marrow formation through the Wnt signaling pathway: Observations documented here suggest that the proper exercise is beneficial to the recovery of bone damage.

Methods

The HA/β-TCP biomaterials were implanted in the muscle of bilateral thighs (non-osseous sites) of eighty Balb/C mice. All animals were then randomly divided into 4 groups (n = 20). In group 1 (negative control group), the mice were fed routinely. In group 2 (running group), all mice were put on a treadmill which was set to a 60-degree incline. The mice ran 20 min thrice each day. A 5-minute break was included in the routine from day three onwards. In group 3 (weight-bearing group), all mice underwent weight-bearing running. The mice in this group performed the same routine as group 2 while carrying 5 g rubber weights. In group 4 (positive control group), dexamethasone was injected in the implanted sites of the biomaterials from the day of the operation. All mice were injected once per week and received a total of 8 injections. One and eight weeks after surgery, the blood serum was collected to detect inflammatory and immunological factors by ELISA. In addition to this, biomaterial specimens were obtained to observe inflammatory and osteogenic levels via histological staining and to facilitate analysis of the osteogenic mechanism by Western Blot.

Results

The inflammation indexes caused by surgery were alleviated through running or weight-bearing running: The tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels were significantly reduced in groups 2 and 3 at week 8. Exercise also enhanced the secretion of interferon-γ (IFN-γ) in mice; this can strengthen their immunity. The new bone tissues were observed in all groups; however, the area percentage of new bone tissues and the number of osteoblasts were highest in the weight-bearing group. Furthermore, the key proteins of wingless/integrated (Wnt) signaling pathway, Wnt1, Wnt3a, and β-catenin, were up-regulated during osteoinduction. This up-regulation activated runt-related transcription factor-2 (Runx2), increased the expression of osteopontin (OPN) and osteocalcin (OCN).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。