Pharmacological Inhibition of HSP90 Radiosensitizes Head and Neck Squamous Cell Carcinoma Xenograft by Inhibition of DNA Damage Repair, Nucleotide Metabolism, and Radiation-Induced Tumor Vasculogenesis

通过抑制 DNA 损伤修复、核苷酸代谢和放射诱导的肿瘤血管生成,HSP90 的药理抑制可使头颈部鳞状细胞癌异种移植瘤对放射线敏感

阅读:6
作者:Sarwat Naz, Andrew J Leiker, Rajani Choudhuri, Olivia Preston, Anastasia L Sowers, Sangeeta Gohain, Janet Gamson, Askale Mathias, Carter Van Waes, John A Cook, James B Mitchell

Conclusions

AT13387 treatment resulted in pharmacologic inhibition of cancer cell metabolism that was linked to DNA damage repair. AT13387 combined with IR inhibited IR-induced vasculogenesis, a process involved in tumor recurrence postradiotherapy. Combining AT13387 with IR warrants consideration of clinical trial assessment.

Purpose

Recent preclinical studies suggest combining the HSP90 inhibitor AT13387 (Onalespib) with radiation (IR) against colon cancer and head and neck squamous cell carcinoma (HNSCC). These studies emphasized that AT13387 downregulates HSP90 client proteins involved in oncogenic signaling and DNA repair mechanisms as major drivers of enhanced radiosensitivity. Given the large array of client proteins HSP90 directs, we hypothesized that other key proteins or signaling pathways may be inhibited by AT13387 and contribute to enhanced radiosensitivity. Metabolomic analysis of HSP90 inhibition by AT13387 was conducted to identify metabolic biomarkers of radiosensitization and whether modulations of key proteins were involved in IR-induced tumor vasculogenesis, a process involved in tumor recurrence.

Results

In agreement with recent studies, AT13387 treatment combined with IR resulted in a G2/M cell cycle arrest and inhibited DNA repair. Metabolomic profiling indicated a decrease in key metabolites in glycolysis and tricarboxylic acid cycle by AT13387, a reduction in Adenosine 5'-triphosphate levels, and rate-limiting metabolites in nucleotide metabolism, namely phosphoribosyl diphosphate and aspartate. HNSCC xenografts treated with the combination exhibited increased tumor regrowth delay, decreased tumor infiltration of CD45 and CD11b+ bone marrow-derived cells, and inhibition of HIF-1 and SDF-1 expression, thereby inhibiting IR-induced vasculogenesis. Conclusions: AT13387 treatment resulted in pharmacologic inhibition of cancer cell metabolism that was linked to DNA damage repair. AT13387 combined with IR inhibited IR-induced vasculogenesis, a process involved in tumor recurrence postradiotherapy. Combining AT13387 with IR warrants consideration of clinical trial assessment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。