A ubiquitinome analysis to study the functional roles of the proteasome associated deubiquitinating enzymes USP14 and UCH37

通过泛素组分析研究蛋白酶体相关去泛素化酶 USP14 和 UCH37 的功能作用

阅读:6
作者:Lennart van der Wal, Karel Bezstarosti, Jeroen A A Demmers

Conclusions

This work presents novel insights into the function of proteasome associated DUBs and illustrates the power of in-depth ubiquitinomics for screening the activity of DUBs and of DUB modulating compounds.

Methods

We have applied a SILAC based quantitative ubiquitinomics to study the effects of CRISPR-Cas9 based knockout of each of these DUBs on the dynamic cellular ubiquitinome. Also, we have studied the function of the small molecule inhibitor b-AP15, which has the potential to specifically target USP14 and UCH37.

Results

We report distinct effects on the ubiquitinome and the ability of the proteasome to clear proteins upon removal of either USP14 or UCH37, while the simultaneous removal of both DUBs suggests less redundancy than previously anticipated. In addition, broad and severe off-target effects were observed for b-AP15, questioning the alleged specificity of this inhibitor. Conclusions: This work presents novel insights into the function of proteasome associated DUBs and illustrates the power of in-depth ubiquitinomics for screening the activity of DUBs and of DUB modulating compounds.

Significance

Introduction: The removal of (poly)ubiquitin chains at the proteasome is a key step in the protein degradation pathway that determines which proteins are degraded and ultimately decides cell fate. Three different deubiquitinating enzymes (DUBs) are associated to the human proteasome, PSMD14/RPN11, USP14 and UCH37/UCHL5. However, the functional roles and specificities of these proteasomal DUBs remains elusive. Materials & methods: We have applied a SILAC based quantitative ubiquitinomics to study the effects of CRISPR-Cas9 based knockout of each of these DUBs on the dynamic cellular ubiquitinome. Also, we have studied the function of the small molecule inhibitor b-AP15, which has the potential to specifically target USP14 and UCH37. Results: We report distinct effects on the ubiquitinome and the ability of the proteasome to clear proteins upon removal of either USP14 or UCH37, while the simultaneous removal of both DUBs suggests less redundancy than previously anticipated. In addition, broad and severe off-target effects were observed for b-AP15, questioning the alleged specificity of this inhibitor. Conclusions: This work presents novel insights into the function of proteasome associated DUBs and illustrates the power of in-depth ubiquitinomics for screening the activity of DUBs and of DUB modulating compounds.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。