Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling

肥胖引起的赖氨酸乙酰化会增加心脏脂肪酸氧化并损害胰岛素信号

阅读:5
作者:Osama Abo Alrob, Sowndramalingam Sankaralingam, Cary Ma, Cory S Wagg, Natasha Fillmore, Jagdip S Jaswal, Michael N Sack, Richard Lehner, Mahesh P Gupta, Evangelos D Michelakis, Raj S Padwal, David E Johnstone, Arya M Sharma, Gary D Lopaschuk

Aims

Lysine acetylation is a novel post-translational pathway that regulates the activities of enzymes involved in both fatty acid and glucose metabolism. We examined whether lysine acetylation controls heart glucose and fatty acid oxidation in high-fat diet (HFD) obese and SIRT3 knockout (KO) mice.

Conclusion

We conclude that increased cardiac fatty acid oxidation in response to high-fat feeding is controlled, in part, via the down-regulation of SIRT3 and concomitant increased acetylation of mitochondrial β-oxidation enzymes.

Results

C57BL/6 mice were placed on either a HFD (60% fat) or a low-fat diet (LFD; 4% fat) for 16 or 18 weeks. Cardiac fatty acid oxidation rates were significantly increased in HFD vs. LFD mice (845 ± 76 vs. 551 ± 87 nmol/g dry wt min, P < 0.05). Activities of the fatty acid oxidation enzymes, long-chain acyl-CoA dehydrogenase (LCAD), and β-hydroxyacyl-CoA dehydrogenase (β-HAD) were increased in hearts from HFD vs. LFD mice, and were associated with LCAD and β-HAD hyperacetylation. Cardiac protein hyperacetylation in HFD-fed mice was associated with a decrease in SIRT3 expression, while expression of the mitochondrial acetylase, general control of amino acid synthesis 5 (GCN5)-like 1 (GCN5L1), did not change. Interestingly, SIRT3 deletion in mice also led to an increase in cardiac fatty acid oxidation compared with wild-type (WT) mice (422 ± 29 vs. 291 ± 17 nmol/g dry wt min, P < 0.05). Cardiac lysine acetylation was increased in SIRT3 KO mice compared with WT mice, including increased acetylation and activity of LCAD and β-HAD. Although the HFD and SIRT3 deletion decreased glucose oxidation, pyruvate dehydrogenase acetylation was unaltered. However, the HFD did increase Akt acetylation, while decreasing its phosphorylation and activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。