Association of medullary reticular formation ventral part with spasticity in mice suffering from photothrombotic stroke

光血栓性中风小鼠脊髓网状结构腹侧部与痉挛的关系

阅读:13
作者:Shogo Isumi, Daiki Futamura, Takuto Hanasaki, Yukito Sako, Shotaro Miyata, Hirohito Kan, Yumika Suzuki, Naoki Hasegawa, Hajime Mushiake, Satoshi Kametaka, Yasushi Uchiyama, Makoto Osanai, Sachiko Lee-Hotta

Abstract

Strokes cause spasticity via stretch reflex hyperexcitability in the spinal cord, and spastic paralysis due to involuntary muscle contraction in the hands and fingers can severely restrict skilled hand movements. However, the underlying neurological mechanisms remain unknown. Using a mouse model of spasticity after stroke, we demonstrate changes in neuronal activity with and without electrostimulation of the afferent nerve to induce the stretch reflex, measured using quantitative activation-induced manganese-enhanced magnetic resonance imaging. Neuronal activity increased within the ventral medullary reticular formation (MdV) in the contralesional brainstem during the acute post-stroke phase, and this increase was characterised by activation of circuits involved in spasticity. Interestingly, ascending electrostimulation inhibited the MdV activity on the stimulation side in normal conditions. Moreover, immunohistochemical staining showed that, in the acute phase, the density of GluA1, one of the α-amino-3 hydroxy‑5 methyl -4 isoxazolepropionic acid receptor (AMPAR) subunits, at the synapses of MdV neurons was significantly increased. In addition, the GluA1/GluA2 ratio in these receptors was altered at 2 weeks post-stroke, confirming homeostatic plasticity as the underlying mechanisms of spasticity. These results provide new insights into the relationship between impaired skilled movements and spasticity at the acute post-stroke phase.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。