TLR3- and MyD88-dependent signaling differentially influences the development of West Nile virus-specific B cell responses in mice following immunization with RepliVAX WN, a single-cycle flavivirus vaccine candidate

TLR3 和 MyD88 依赖性信号对小鼠接种 RepliVAX WN(一种单周期黄病毒候选疫苗)后西尼罗河病毒特异性 B 细胞反应的发展有不同的影响

阅读:11
作者:Jingya Xia, Evandro R Winkelmann, Summer R Gorder, Peter W Mason, Gregg N Milligan

Abstract

Recognition of conserved pathogen-associated molecular patterns (PAMPs) by host pattern recognition receptors (PRRs) results in the activation of innate signaling pathways that drive the innate immune response and ultimately shape the adaptive immune response. RepliVAX WN, a single-cycle flavivirus (SCFV) vaccine candidate derived from West Nile virus (WNV), is intrinsically adjuvanted with multiple PAMPs and induces a vigorous anti-WNV humoral response. However, the innate mechanisms that link pattern recognition and development of vigorous antigen-specific B cell responses are not completely understood. Moreover, the roles of individual PRR signaling pathways in shaping the B cell response to this live attenuated SCFV vaccine have not been established. We examined and compared the role of TLR3- and MyD88-dependent signaling in the development of anti-WNV-specific antibody-secreting cell responses and memory B cell responses induced by RepliVAX WN. We found that MyD88 deficiency significantly diminished B cell responses by impairing B cell activation, development of germinal centers (GC), and the generation of long-lived plasma cells (LLPCs) and memory B cells (MBCs). In contrast, TLR3 deficiency had more effect on maintenance of GCs and development of LLPCs, whereas differentiation of MBCs was unaffected. Our data suggest that both TLR3- and MyD88-dependent signaling are involved in the intrinsic adjuvanting of RepliVAX WN and differentially contribute to the development of vigorous WNV-specific antibody and B cell memory responses following immunization with this novel SCFV vaccine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。