Cellular uptake and imaging studies of glycosylated silica nanoprobe (GSN) in human colon adenocarcinoma (HT 29 cell line)

糖基化二氧化硅纳米探针 (GSN) 在人结肠腺癌 (HT 29 细胞系) 中的细胞摄取和成像研究

阅读:7
作者:Bita Mehravi, Mohsen Ahmadi, Massoud Amanlou, Ahmad Mostaar, Mehdi Shafiee Ardestani, Negar Ghalandarlaki

Conclusion

These results showed that GSN provided a critical guideline in selecting these nanoparticles as an appropriate contrast agent for nanomedicine applications.

Methods

In this study, intracellular uptake (HT 29 cell line) of GSN was analyzed quantitatively and qualitatively with inductively coupled plasma atomic emission spectroscopy, flow cytometry, and fluorescent microscopy. In vitro and in vivo relaxometry of this nanoparticle was determined using a 3 Tesla MRI; biodistribution of GSN and Magnevist® were measured in different tissues.

Purpose

In recent years, molecular imaging by magnetic resonance imaging (MRI) has gained prominence in the detection of tumor cells. The scope of this study is on molecular imaging and on the cellular uptake study of a glycosylated silica nanoprobe (GSN).

Results

Results suggest that the cellular uptake of GSN was about 70%. The r1 relaxivity of this nanoparticle in the cells was measured to be 12.9 ± 1.6 mM(-1) s(-1) and on a per lanthanide gadolinium (Gd(3+)) basis. Results also indicate an average cellular uptake of 0.7 ± 0.009 pg Gd(3+) per cell. It should be noted that 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay demonstrated that the cells were effectively labeled without cytotoxicity, and that using MRI for quantitative estimation of delivery and uptake of targeted contrast agents and early detection of human colon cancer cells using targeted contrast agents, is feasible.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。