Enhanced Bone Metastases in Skeletally Immature Mice

骨骼未成熟小鼠的骨转移增强

阅读:8
作者:Henry R Haley, Nathan Shen, Tonela Qyli, Johanna M Buschhaus, Matthew Pirone, Kathryn E Luker, Gary D Luker

Abstract

Bone constitutes the most common site of breast cancer metastases either at time of presentation or recurrent disease years after seemingly successful therapy. Bone metastases cause substantial morbidity, including life-threatening spinal cord compression and hypercalcemia. Given the high prevalence of patients with breast cancer, health-care costs of bone metastases (>$20,000 per episode) impose a tremendous economic burden on society. To investigate mechanisms of bone metastasis, we developed femoral artery injection of cancer cells as a physiologically relevant model of bone metastasis. Comparing young (~6 weeks), skeletally immature mice to old (~6 months) female mice with closed physes (growth plates), we showed significantly greater progression of osteolytic metastases in young animals. Bone destruction increased in the old mice following ovariectomy, emphasizing the pathologic consequences of greater bone turnover and net loss. Despite uniform initial distribution of breast cancer cells throughout the hind limb after femoral artery injection, we observed preferential formation of osteolytic bone metastases in the proximal tibia. Tropism for the proximal tibia arises in part because of TGF-β, a cytokine abundant in both physes of skeletally immature mice and matrix of bone in mice of all ages. We also showed that age-dependent effects on osteolytic bone metastases did not occur in male mice with disseminated breast cancer cells in bone. These studies establish a model system to specifically focus on pathophysiology and treatment of bone metastases and underscore the need to match biologic variables in the model to relevant subsets of patients with breast cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。