Unusual plastic strain-induced phase transformation phenomena in silicon

硅中不寻常的塑性应变诱发相变现象

阅读:9
作者:Sorb Yesudhas, Valery I Levitas, Feng Lin, K K Pandey, Jesse S Smith

Abstract

Pressure-induced phase transformations (PTs) in Si, the most important electronic material, have been broadly studied, whereas strain-induced PTs have never been studied in situ. Here, we reveal in situ various important plastic strain-induced PT phenomena. A correlation between the direct and inverse Hall-Petch effect of particle size on yield strength and pressure for strain-induced PT is predicted theoretically and confirmed experimentally for Si-I→Si-II PT. For 100 nm particles, the strain-induced PT Si-I→Si-II initiates at 0.3 GPa under both compression and shear while it starts at 16.2 GPa under hydrostatic conditions. The Si-I→Si-III PT starts at 0.6 GPa but does not occur under hydrostatic pressure. Pressure in small Si-II and Si-III regions of micron and 100 nm particles is ∼5-7 GPa higher than in Si-I. For 100 nm Si, a sequence of Si-I → I + II → I + II + III PT is observed, and the coexistence of four phases, Si-I, II, III, and XI, is found under torsion. Retaining Si-II and single-phase Si-III at ambient pressure and obtaining reverse Si-II→Si-I PT demonstrates the possibilities of manipulating different synthetic paths. The obtained results corroborate the elaborated dislocation pileup-based mechanism and have numerous applications for developing economic defect-induced synthesis of nanostructured materials, surface treatment (polishing, turning, etc.), and friction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。