Effects of Subdiaphragmatic Vagotomy in the MPTP-induced Neurotoxicity in the Striatum and Colon of Mice

膈下迷走神经切断术对小鼠MPTP诱导的纹状体和结肠神经毒性的影响

阅读:7
作者:Jiajing Shan, Youge Qu, Jiancheng Zhang, Li Ma, Kenji Hashimoto

Conclusion

These data suggest that subdiaphragmatic vagus nerve doses not play a role in the MPTP-induced neurotoxicity in the brain and colon.

Methods

Sham or SVD was performed. Subsequently, saline or MPTP (10 mg/kg × 3, 2-hour interval) was administered to mice. Western blot analysis of tyrosine hydroxylase (TH) and dopamine transporter (DAT) in the striatum and phosphorylated α-synuclein (p-α-Syn) in the colon was performed.

Objective

Gut-microbiota-brain axis plays a role in the pathogenesis of Parkinson's disease (PD). The subdiaphragmatic vagus nerve serves as a major modulatory pathway between the gut microbiota and the brain. However, the role of subdiaphragmatic vagus nerve in PD pathogenesis are unknown. Here, we investigated the effects of subdiaphragmatic vagotomy (SDV) on the neurotoxicity in the mouse striatum and colon after administration of 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP).

Results

Repeated administration of MPTP significantly caused reduction of TH and DAT in the striatum and increase of p-α-Syn in the colon of mice. However, SDV did not affect the reduction of TH and DAT in the striatum and increases in p-α-Syn in the colon after repeated MPTP administration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。