The noncanonical WNT pathway is operative in idiopathic pulmonary arterial hypertension

非经典 WNT 通路在特发性肺动脉高压中起作用

阅读:5
作者:Isabel P Laumanns, Ludger Fink, Jochen Wilhelm, Jens-C Wolff, Rita Mitnacht-Kraus, Sabine Graef-Hoechst, Maria M Stein, Rainer M Bohle, Walter Klepetko, Mir A R Hoda, Ralph T Schermuly, Friedrich Grimminger, Werner Seeger, Robert Voswinckel

Abstract

Idiopathic pulmonary arterial hypertension (IPAH) is a fatal disease that comprises sustained vasoconstriction, enhanced proliferation of pulmonary vascular cells, and in situ thrombosis. The discovery of several contributing signaling pathways in recent years has resulted in an expanding array of novel therapies; however, IPAH remains a progressive disease with poor outcome in most instances. To identify new regulatory pathways of vascular remodeling in IPAH, we performed transcriptome-wide expression profiling of laser-microdissected pulmonary arterial resistance vessels derived from explanted IPAH and nontransplanted donor lung tissues. Statistical analysis of the data derived from six individuals in each group showed significant regulation of several mediators of the canonical and noncanonical WNT pathway. As to the noncanonical WNT pathway, the planar cell polarity (PCP) pathway, the ras homolog gene family member A (RHOA), and ras-related C3 botulinum toxin substrate-1 (RAC1) were strongly up-regulated. Real-time PCR of laser-microdissected pulmonary arteries confirmed these array results and showed in addition significant up-regulation of further PCP mediators wingless member 11 (WNT11), disheveled associated activator of morphogenesis-1 (DAAM1), disheveled (DSV), and RHO-kinase (ROCK). Immunohistochemical staining and semiquantitative expression analysis confirmed the markedly enhanced expression of the PCP mediators in the pulmonary resistance vessels, in particular in the endothelial layer in IPAH. Therefore we propose the PCP pathway to be critically involved in the regulation of vascular remodeling in IPAH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。