MiR-1297 attenuates high glucose-induced injury in HK-2 cells via targeting COL1A2

MiR-1297 通过靶向 COL1A2 减轻高糖诱导的 HK-2 细胞损伤

阅读:6
作者:Shujuan Wang, Kun Sun, Honglei Hu, Xingqian Jin, Zhenzhen Wang, Hongmei Zhang, Xiaodong Zhao

Background

In this study, we aimed to explore whether COL1A2 and miR-1297 participated in the progression of diabetic nephropathy (DN) in vitro and classified the underlying mechanisms.

Conclusion

This study sheds a light on the role miR-1297/COL1A2 in DN progression and provides a novel promising therapy strategy for suppressing DN progression.

Methods

d-Glucose (30 mM; high glucose, HG)-stimulated HK-2 cells were used to mimic DN condition. RNA and non-coding RNA profiles were from Gene Expression Omnibus (GEO) database. The interaction between miR-1297 and COL1A2 was measured by dual-luciferase reporter assay. Gene Set Enrichment Analysis (GSEA) method was conducted to analyse COL1A2-associated signalling pathways. The role of miR-1297/COL1A2 in biological behaviours of HG-induced HK-2 cells were analysed by cell counting kit-8 and apoptosis assays.

Results

Bioinformatics analysis revealed that COL1A2 was up-regulated in DN tissues. We predicted and verified miR-1297 as the regulatory miRNA of COL1A2, and the expression of miR-1297 was decreased in DN tissues and HG-stimulated HK-2 cells. Overexpression of miR-1297 could promote cell proliferation and inhibit apoptosis to protect HK-2 cells from HG-induced damage. And knockdown of COL1A2 enhanced the protective effects of miR-1297 on HG-stimulated HK-2 cells. GSEA results revealed that several inflammatory pathways were enriched in COL1A2 high-expression group. Meanwhile, transfection of miR-1297 reduced the phosphorylation of NFκB and expression of three important pro-inflammatory genes including cytokine CCL5, adhesion molecules ICAM1 and VCAM1 via targeting COL1A2. These results suggested that miR-1297 protected HG-treated HK-2 cells probably through suppressing inflammation via targeting COL1A2.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。