Breaking membrane barriers to neutralize E. coli and K. pneumoniae virulence with PEGylated branched polyethylenimine

利用聚乙二醇化支链聚乙烯亚胺打破膜屏障,中和大肠杆菌和肺炎克雷伯菌的毒力

阅读:9
作者:Cassandra L Wouters, Neda Heydarian, Jennifer Pusavat, Hannah Panlilio, Anh K Lam, Erika L Moen, Robert E Brennan, Charles V Rice

Abstract

Bacterial infections caused by Gram-negative pathogens, such as those in the family Enterobacteriaceae, are among the most difficult to treat because effective therapeutic options are either very limited or non-existent. This raises serious concern regarding the emergence and spread of multi-drug resistant (MDR) pathogens in the community setting; and thus, creates the need for discovery efforts and/or early-stage development of novel therapies for infections. Our work is directed towards branched polyethylenimine (BPEI) modified with polyethylene glycol (PEG) as a strategy for targeting virulence from Gram-negative bacterial pathogens. Here, we neutralize lipopolysaccharide (LPS) as a barrier to the influx of antibiotics. Data demonstrate that the β-lactam antibiotic oxacillin, generally regarded as ineffective against Gram-negative bacteria, can be potentiated by 600 Da BPEI to kill some Escherichia coli and some Klebsiella pneumoniae. Modification of 600 Da BPEI with polyethylene glycol (PEG) could increase drug safety and improves potentiation activity. The ability to use the Gram-positive agent, oxacillin, against Gram-negative pathogens could expand the capability to deliver effective treatments that simplify, reduce, or eliminate some complicated treatment regimens.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。