MicroRNA-325 facilitates atherosclerosis progression by mediating the SREBF1/LXR axis via KDM1A

MicroRNA-325 通过 KDM1A 介导 SREBF1/LXR 轴促进动脉粥样硬化进展

阅读:6
作者:Yanhua Pu, Qian Zhao, Xuelin Men, Wei Jin, Min Yang

Aims

MicroRNA-325 (miR-325) was significantly upregulated in diabetic atherosclerosis, while its specific role in atherosclerosis has not been established. The present study was set to probe the effects of miR-325 on the atherosclerosis progression and to explore the mechanisms. Materials and

Methods

The ApoE-/- mouse with atherosclerosis was developed to detect the miR-325 expression in atherosclerotic plaques. The pathological symptoms of atherosclerotic mice were observed by injection of miR-325 mimic or inhibitor. Subsequently, the levels of CRP, IL-6, IL-1β and TNF-ɑ in mouse serum were measured by ELISA. Then, miR-325 was overexpressed or silenced in RAW264.7-derived foam cells (FCs), and cholesterol efflux and lipid content were evaluated. Furthermore, miR-325 expression was altered in HA-VSMCs to measure viability and apoptosis. The targets of miR-325 were predicted in a bioinformatics website, and the expression of KDM1A, SREBF1 and PPARγ-LXR-ABCA1 in mouse arterial tissues and cells was detected, followed by rescue experiments. Key findings: miR-325 was elevated in arterial tissues of atherosclerotic mice, and miR-325 inhibition in mice reduced the contents of total cholesterol, triglyceride, low-density lipoprotein, and CRP, IL-6, IL-1β and TNF-ɑ levels in mouse serum. miR-325 inhibitor facilitated the cholesterol efflux and decreased the lipid content in RAW264.7 cells, and also diminished HA-VSMC viability. miR-325 targeted KDM1A to reduce SREBF1 expression, and further KDM1A suppression inhibited cholesterol efflux in RAW264.7 cells and the activation of PPARγ-LXR-ABCA1 pathway. Significance: miR-325 lowers SREBF1 expression by decreasing KDM1A expression, thereby inhibiting the activation of the PPARγ-LXR-ABCA1 pathway and thus promoting atherosclerosis.

Significance

miR-325 lowers SREBF1 expression by decreasing KDM1A expression, thereby inhibiting the activation of the PPARγ-LXR-ABCA1 pathway and thus promoting atherosclerosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。