An organ-on-chip device with integrated charge sensors and recording microelectrodes

带有集成电荷传感器和记录微电极的器官芯片装置

阅读:5
作者:Hande Aydogmus, Michel Hu, Lovro Ivancevic, Jean-Philippe Frimat, Arn M J M van den Maagdenberg, Pasqualina M Sarro, Massimo Mastrangeli

Abstract

Continuous monitoring of tissue microphysiology is a key enabling feature of the organ-on-chip (OoC) approach for in vitro drug screening and disease modeling. Integrated sensing units are particularly convenient for microenvironmental monitoring. However, sensitive in vitro and real-time measurements are challenging due to the inherently small size of OoC devices, the characteristics of commonly used materials, and external hardware setups required to support the sensing units. Here we propose a silicon-polymer hybrid OoC device that encompasses transparency and biocompatibility of polymers at the sensing area, and has the inherently superior electrical characteristics and ability to house active electronics of silicon. This multi-modal device includes two sensing units. The first unit consists of a floating-gate field-effect transistor (FG-FET), which is used to monitor changes in pH in the sensing area. The threshold voltage of the FG-FET is regulated by a capacitively-coupled gate and by the changes in charge concentration in close proximity to the extension of the floating gate, which functions as the sensing electrode. The second unit uses the extension of the FG as microelectrode, in order to monitor the action potential of electrically active cells. The layout of the chip and its packaging are compatible with multi-electrode array measurement setups, which are commonly used in electrophysiology labs. The multi-functional sensing is demonstrated by monitoring the growth of induced pluripotent stem cell-derived cortical neurons. Our multi-modal sensor is a milestone in combined monitoring of different, physiologically-relevant parameters on the same device for future OoC platforms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。