Effects of Room Temperature Stretching and Annealing on the Crystallization Behavior and Performance of Polyvinylidene Fluoride Hollow Fiber Membranes

室温拉伸及退火对聚偏氟乙烯中空纤维膜结晶行为及性能的影响

阅读:6
作者:Yuanhui Tang, Yakai Lin, Hanhan Lin, Chunyu Li, Bo Zhou, Xiaolin Wang

Abstract

A treatment consisting of room temperature stretching and subsequent annealing was utilized to regulate the morphology and performance of polyvinylidene fluoride (PVDF) hollow fiber membranes. The effects of stretching ratios and stretching rates on the crystallization behavior, morphology, and performance of the PVDF membranes were investigated. The results showed that the treatment resulted in generation of the β crystalline phase PVDF and increased the crystallinity of the membrane materials. The treatment also brought about the orientation of the membrane pores along the stretching direction and led to an increase in the mean pore size of the membranes. In addition, as the stretching ratio increased, the tensile strength and permeation flux were improved while the elongation at break was depressed. However, compared to the stretching ratio, the stretching rate had less influence on the membrane structure and performance. In general, as the stretching ratio was 50% and the stretching rate was 20 mm/min, the tensile strength was increased by 36% to 7.47 MPa, and the pure water flux was as high as 776.28 L/(m2·h·0.1bar), while the mean pore size was not changed significantly. This research proved that the room temperature stretching and subsequent annealing was a simple but effective method for regulating the structure and the performance of the PVDF porous membranes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。