Effects of carotid baroreceptor stimulation on aortic remodeling in obese rats

颈动脉压力感受器刺激对肥胖大鼠主动脉重塑的影响

阅读:7
作者:Qiao Yu, Ling Shu, Lang Wang, Kaile Gao, Jing Wang, Mingyan Dai, Quan Cao, Yijie Zhang, Qiang Luo, Bangwang Hu, Dilin Dai, Jie Chen, Mingwei Bao

Aim

Our previous study found carotid baroreceptor stimulation (CBS) reduces body weight and white adipose tissue (WAT) weight, restores abnormal secretion of adipocytokines and inflammation factors, decreases systolic blood pressure (SBP) by inhibiting activation of sympathetic nervous system (SNS) and renin-angiotensin system (RAS) in obese rats. In this study, we explore effects of CBS on aortic remodeling in obese rats.

Conclusion

CBS reduced BP and reversed aortic remodeling in obese rats, the underlying mechanism might be related to the suppressed SNS activity, restored adipocytokine secretion and restrained RAS activity of WAT.

Results

Rats were fed high-fat diet (HFD) for 16 weeks to induce obesity and underwent either CBS device implantation and stimulation or sham operation at 8 weeks. BP and body weight were measured weekly. RAS activity of WAT, histological, biochemical and functional profiles of aortas were detected after 16 weeks. CBS effectively decreased BP in obese rats, downregulated mRNA expression of angiotensinogen (AGT) and renin in WAT, concentrations of AGT, renin, angiotensin II (Ang II), protein levels of Ang II receptor 1 (AT1R) and Ang II receptor 2 (AT2R) in WAT were declined. CBS inhibited reactive oxygen species (ROS) generation, inflammatory response and endoplasmic reticulum (ER) stress in aortas of obese rats, restrained vascular wall thickening and vascular smooth muscle cells (VSMCs) phenotypic switching, increased nitric oxide (NO) synthesis, promoted endothelium-dependent vasodilatation by decreasing protein expression of AT1R and leptin receptor (LepR), increasing protein expression of adiponectin receptor 1 (AdipoR1) in aortic VSMCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。