CX3CL1/fractalkine regulates the differentiation of human peripheral blood monocytes and monocyte-derived dendritic cells into osteoclasts

CX3CL1/fractalkine 调控人外周血单核细胞和单核细胞衍生的树突状细胞向破骨细胞分化

阅读:7
作者:Sei Muraoka, Kaichi Kaneko, Kaori Motomura, Junko Nishio, Toshihiro Nanki

Abstract

Osteoclast differentiation is promoted under inflammatory conditions and osteoclasts play a major role in bone destruction in rheumatoid arthritis (RA). Chemokine (C-X3-C motif) ligand 1 (CX3CL1), also known as fractalkine, functions as a chemoattractant and adhesion molecule, and is involved in the pathogenesis of RA. The blockade of CX3CL1 inhibits the migration of macrophages and osteoclast precursor cells into the inflamed synovium. In the present study, we investigated the direct stimulatory effects of CX3CL1 on osteoclast differentiation from human peripheral blood monocytes and monocyte-derived dendritic cells. A stimulation with CX3CL1 significantly promoted osteoclast differentiation from CD16- monocytes and also monocyte-derived dendritic cells induced by macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL). On the other hand, CD16+ monocytes treated with M-CSF and RANKL did not differentiate into osteoclasts, even with CX3CL1. Calcium resorption was significantly increased by monocyte-derived osteoclasts, but not by dendritic cell-derived osteoclasts, following the addition of CX3CL1. The present results suggest that CX3CL1 directly regulates osteoclast differentiation. CX3CL1 may play important roles in the pathogenesis of RA, not only through the accumulation of inflammatory cells, but also through osteoclastogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。