Epigenetically silenced lncRNA SNAI3-AS1 promotes ferroptosis in glioma via perturbing the m6A-dependent recognition of Nrf2 mRNA mediated by SND1

表观遗传沉默的 lncRNA SNAI3-AS1 通过干扰 SND1 介导的 m6A 依赖性 Nrf2 mRNA 识别来促进胶质瘤中的铁死亡

阅读:4
作者:Jianglin Zheng #, Qing Zhang #, Zhen Zhao #, Yue Qiu, Yujie Zhou, Zhipeng Wu, Cheng Jiang, Xuan Wang, Xiaobing Jiang

Background

Ferroptosis has been linked to tumor progression and resistance to antineoplastic therapy. Long noncoding RNA (lncRNA) exerts a regulatory role in various biological processes of tumor cells, while the function and molecular mechanism of lncRNA in ferroptosis are yet to be clarified in glioma.

Conclusions

Our findings elucidate the effect and detailed mechanism of SNAI3-AS1/SND1/Nrf2 signalling axis in ferroptosis, and provide a theoretical support for inducing ferroptosis to improve glioma treatment.

Methods

Both gain-of-function and loss-of-function experiments were employed to investigate the effects of SNAI3-AS1 on the tumorigenesis and ferroptosis susceptibility of glioma in vitro and in vivo. Bioinformatics analysis, Bisulfite sequencing PCR, RNA pull-down, RIP, MeRIP and dual-luciferase reporter assay were performed to explore the low expression mechanism of SNAI3-AS1 and the downstream mechanism of SNAI3-AS1 in ferroptosis susceptibility of glioma.

Results

We found that ferroptosis inducer erastin downregulates SNAI3-AS1 expression in glioma by increasing the DNA methylation level of SNAI3-AS1 promoter. SNAI3-AS1 functions as a tumor suppressor in glioma. Importantly, SNAI3-AS1 enhances the anti-tumor activity of erastin by promoting ferroptosis both in vitro and in vivo. Mechanistically, SNAI3-AS1 competitively binds to SND1 and perturbs the m6A-dependent recognition of Nrf2 mRNA 3'UTR by SND1, thereby reducing the mRNA stability of Nrf2. Rescue experiments confirmed that SND1 overexpression and silence can rescue the gain- and loss-of-function ferroptotic phenotypes of SNAI3-AS1, respectively. Conclusions: Our findings elucidate the effect and detailed mechanism of SNAI3-AS1/SND1/Nrf2 signalling axis in ferroptosis, and provide a theoretical support for inducing ferroptosis to improve glioma treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。