MATERIAL PROPERTIES OF THE EMBRYONIC SMALL INTESTINE DURING BUCKLING MORPHOGENESIS

胚胎小肠在屈曲形态发生过程中的材料特性

阅读:5
作者:Jenny Gao, Lucia Martin, Elise A Loffet, John F Durel, Panagiotis Oikonomou, Nandan L Nerurkar

Abstract

During embryonic development, tissues undergo dramatic deformations as functional morphologies are stereotypically sculpted from simple rudiments. Formation of healthy, functional organs therefore requires tight control over the material properties of embryonic tissues during development, yet the biological basis of embryonic tissue mechanics is poorly understood. The present study investigates the mechanics of the embryonic small intestine, a tissue that is compactly organized in the body cavity by a mechanical instability during development, wherein differential elongation rates between the intestinal tube and its attached mesentery create compressive forces that buckle the tube into loops with wavelength and curvature that are tightly conserved for a given species. Focusing on the intestinal tube, we combined micromechanical testing with histologic analyses and enzymatic degradation experiments to conclude that elastic fibers closely associated with intestinal smooth muscle layers are responsible for the bending stiffness of the tube, and for establishing its pronounced mechanical anisotropy. These findings provide insights into the developmental role of elastic fibers in controlling tissue stiffness, and raise new questions on the physiologic function of elastic fibers in the intestine during adulthood.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。