Bioactivity assessment of natural compounds using machine learning models trained on target similarity between drugs

使用针对药物间靶标相似性进行训练的机器学习模型对天然化合物的生物活性进行评估

阅读:9
作者:Vinita Periwal, Stefan Bassler, Sergej Andrejev, Natalia Gabrielli, Kaustubh Raosaheb Patil, Athanasios Typas, Kiran Raosaheb Patil

Abstract

Natural compounds constitute a rich resource of potential small molecule therapeutics. While experimental access to this resource is limited due to its vast diversity and difficulties in systematic purification, computational assessment of structural similarity with known therapeutic molecules offers a scalable approach. Here, we assessed functional similarity between natural compounds and approved drugs by combining multiple chemical similarity metrics and physicochemical properties using a machine-learning approach. We computed pairwise similarities between 1410 drugs for training classification models and used the drugs shared protein targets as class labels. The best performing models were random forest which gave an average area under the ROC of 0.9, Matthews correlation coefficient of 0.35, and F1 score of 0.33, suggesting that it captured the structure-activity relation well. The models were then used to predict protein targets of circa 11k natural compounds by comparing them with the drugs. This revealed therapeutic potential of several natural compounds, including those with support from previously published sources as well as those hitherto unexplored. We experimentally validated one of the predicted pair's activities, viz., Cox-1 inhibition by 5-methoxysalicylic acid, a molecule commonly found in tea, herbs and spices. In contrast, another natural compound, 4-isopropylbenzoic acid, with the highest similarity score when considering most weighted similarity metric but not picked by our models, did not inhibit Cox-1. Our results demonstrate the utility of a machine-learning approach combining multiple chemical features for uncovering protein binding potential of natural compounds.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。