An acetylation-mediated chromatin switch governs H3K4 methylation read-write capability

乙酰化介导的染色质开关控制 H3K4 甲基化读写能力

阅读:6
作者:Kanishk Jain, Matthew R Marunde, Jonathan M Burg, Susan L Gloor, Faith M Joseph, Karl F Poncha, Zachary B Gillespie, Keli L Rodriguez, Irina K Popova, Nathan W Hall, Anup Vaidya, Sarah A Howard, Hailey F Taylor, Laylo Mukhsinova, Ugochi C Onuoha, Emily F Patteson, Spencer W Cooke, Bethany C Taylor, 

Abstract

In nucleosomes, histone N-terminal tails exist in dynamic equilibrium between free/accessible and collapsed/DNA-bound states. The latter state is expected to impact histone N-termini availability to the epigenetic machinery. Notably, H3 tail acetylation (e.g. K9ac, K14ac, K18ac) is linked to increased H3K4me3 engagement by the BPTF PHD finger, but it is unknown if this mechanism has a broader extension. Here, we show that H3 tail acetylation promotes nucleosomal accessibility to other H3K4 methyl readers, and importantly, extends to H3K4 writers, notably methyltransferase MLL1. This regulation is not observed on peptide substrates yet occurs on the cis H3 tail, as determined with fully-defined heterotypic nucleosomes. In vivo, H3 tail acetylation is directly and dynamically coupled with cis H3K4 methylation levels. Together, these observations reveal an acetylation 'chromatin switch' on the H3 tail that modulates read-write accessibility in nucleosomes and resolves the long-standing question of why H3K4me3 levels are coupled with H3 acetylation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。