Curcumin Induces Autophagy-mediated Ferroptosis by Targeting the PI3K/AKT/mTOR Signaling Pathway in Gastric Cancer

姜黄素通过靶向 PI3K/AKT/mTOR 信号通路诱导胃癌自噬介导的铁死亡

阅读:7
作者:Xin Zheng, Jun Liu, Wei Hu, Bin Jiang, Xin Zhou, Min Zhang, Ming Song

Abstract

As a very common malignancy of the digestive system, the incidence and mortality rates of gastric cancer (GC) are increasing year by year. The critical role of ferroptosis in cancer development has been well-documented. The polyphenol compound curcumin shows prominent anti-tumor effects in multiple cancer types, including GC. However, whether curcumin participates in GC tumorigenesis by regulating ferroptosis remains unknown. Gastric cancer cells AGS and HGC-27 were treated with curcumin (0, 10, and 20 μM). Cell viability and death were evaluated through CCK-8 and LDH release assays. LC3B expression in cells was estimated through immunofluorescence staining. Intracellular ferrous iron (Fe2+), GSH, MDA, and lipid ROS levels were assessed by corresponding assay kits. The cellular levels of autophagy markers (ATG5, ATG7, Beclin 1, and LC3B), ferroptosis markers (ACSL4, SLC7A11, and GPX4), and phosphorylated (p)-PI3K, p-AKT, and p-mTOR were determined through western blotting. Curcumin attenuated cell viability but stimulated cell death in GC cells. Curcumin enhanced autophagy in GC cells, as demonstrated by the increased levels of ATG5, ATG7, Beclin 1, and LC3B. Besides, curcumin upregulated iron, MDA, GSH, and ACSL4 levels while downregulated lipid ROS, SLC7A11, and GPX4 levels, suggesting its stimulation on ferroptosis in GC cells. Curcumin decreased p-PI3K, p-AKT, and p-mTOR levels in cells. Importantly, the ferroptosis inhibitor ferrostatin-1 overturned the impacts of curcumin on GC cell viability, death, and ferroptosis. Curcumin suppresses GC development by inducing autophagy-mediated ferroptosis by inactivating the PI3K/AKT/mTOR signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。