Antiapoptotic Protein FAIM2 is targeted by miR-3202, and DUX4 via TRIM21, leading to cell death and defective myogenesis

miR-3202 和 DUX4 通过 TRIM21 靶向抗凋亡蛋白 FAIM2,导致细胞死亡和肌生成缺陷

阅读:5
作者:Hossam A N Soliman, Erik A Toso, Inas E Darwish, Samia M Ali, Michael Kyba

Abstract

Inappropriate expression of DUX4, a transcription factor that induces cell death at high levels of expression and impairs myoblast differentiation at low levels of expression, leads to the development of facioscapulohumeral muscular dystrophy (FSHD), however, the pathological mechanisms downstream of DUX4 responsible for muscle loss are poorly defined. We performed a screen of 1972 miR inhibitors for their ability to interfere with DUX4-induced cell death of human immortalized myoblasts. The most potent hit identified by the screen, miR-3202, is known to target the antiapoptotic protein FAIM2. Inhibition of miR-3202 led to the upregulation of FAIM2, and remarkably, expression of DUX4 led to reduced cellular levels of FAIM2. We show that the E3 ubiquitin ligase and DUX4 target gene, TRIM21, is responsible for FAIM2 degradation downstream of DUX4. Human myoblasts overexpressing FAIM2 showed increased resistance to DUX4-induced cell death, whereas in wild-type cells FAIM2 knockdown resulted in increased apoptosis and failure to differentiate into myotubes. The necessity of FAIM2 for myogenic differentiation of WT cells led us to test the effect of FAIM2 overexpression on the impairment of myogenesis by DUX4. Strikingly, FAIM2 overexpression rescued the myogenic differentiation defect caused by low-level expression of DUX4. These data implicate FAIM2 levels, modulated by DUX4 through TRIM21, as an important factor mediating the pathogenicity of DUX4, both in terms of cell viability and myogenic differentiation, and thereby open a new avenue of investigation towards drug targets in FSHD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。