bHLH transcription factors cooperate with chromatin remodelers to regulate cell fate decisions during Arabidopsis stomatal development

bHLH 转录因子与染色质重塑因子协同作用,在拟南芥气孔发育过程中调控细胞命运决定

阅读:5
作者:Ao Liu, Andrea Mair, Juliana L Matos, Macy Vollbrecht, Shou-Ling Xu, Dominique C Bergmann

Abstract

The development of multicellular organisms requires coordinated changes in gene expression that are often mediated by the interaction between transcription factors (TFs) and their corresponding cis-regulatory elements (CREs). During development and differentiation, the accessibility of CREs is dynamically modulated by the epigenome. How the epigenome, CREs, and TFs together exert control over cell fate commitment remains to be fully understood. In the Arabidopsis leaf epidermis, meristemoids undergo a series of stereotyped cell divisions, then switch fate to commit to stomatal differentiation. Newly created or reanalyzed scRNA-seq and ChIP-seq data confirm that stomatal development involves distinctive phases of transcriptional regulation and that differentially regulated genes are bound by the stomatal basic helix-loop-helix (bHLH) TFs. Targets of the bHLHs often reside in repressive chromatin before activation. MNase-seq evidence further suggests that the repressive state can be overcome and remodeled upon activation by specific stomatal bHLHs. We propose that chromatin remodeling is mediated through the recruitment of a set of physical interactors that we identified through proximity labeling-the ATPase-dependent chromatin remodeling SWI/SNF complex and the histone acetyltransferase HAC1. The bHLHs and chromatin remodelers localize to overlapping genomic regions in a hierarchical order. Furthermore, plants with stage-specific knockdown of the SWI/SNF components or HAC1 fail to activate specific bHLH targets and display stomatal development defects. Together, these data converge on a model for how stomatal TFs and epigenetic machinery cooperatively regulate transcription and chromatin remodeling during progressive fate specification.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。