Optimization of concurrent production of xylanolytic and pectinolytic enzymes by Bacillus safensis M35 and Bacillus altitudinis J208 using agro-industrial biomass through Response Surface Methodology

通过响应面法优化 Bacillus safensis M35 和 Bacillus altitudinis J208 利用农业工业生物质同时生产木聚糖和果胶酶

阅读:7
作者:Vihang S Thite, Anuradha S Nerurkar, Nandita N Baxi

Abstract

Application of crude xylanolytic and pectinolytic enzymes in diverse industrial processes make these enzymes commercially valuable and demand their production process to be cost-effective. Out of four different agrowaste biomass, wheat bran (WB) and citrus peel (CP), when amended as fermentation substrates, respectively induced the highest xylanolytic enzymes and pectinolytic enzymes from both, B. safensis M35 and B. altitudinis J208. Further, the simultaneous amendment of WB and CP yielded concurrent production of these cellulase free xylanolytic and pectinolytic enzymes. Hence, the quadratic model was developed using the Central Composite Design of Response Surface Method (CCD-RSM). The model gave the concentration values for WB and CP substrates to be amended in one single production medium for obtaining two optimized predicted response values of xylanase activity and pectinase activity units, which were further practically validated for the xylanase and pectinase production responses from the optimized production medium (OPM). These practically obtained response values from OPM were found to be in accordance with a range of 95% predicted intervals (PI) values. These observations verified the validity of the predicted quadratic model from RSM and suggested that both xylanase and pectinase enzymes can be induced concurrently from both of the bacterial strains.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。