Microglia-induced activation of non-canonical Wnt signaling aggravates neurodegeneration in demyelinating disorders

小胶质细胞诱导的非经典 Wnt 信号激活加剧脱髓鞘疾病中的神经退行性病变

阅读:4
作者:Takeshi Shimizu, Ron Smits, Kazuhiro Ikenaka

Abstract

Oligodendrocytes are myelinating cells of the central nervous system. Multiple sclerosis (MS) is a demyelinating disease characterized by both myelin loss and neuronal degeneration. However, the molecular mechanisms underlying neuronal degeneration in demyelinating disorders are not fully understood. In the experimental autoimmune encephalomyelitis (EAE) demyelinating mouse model of MS, inflammatory microglia produce cytokines including interleukin-1β (IL-1β). Since microglia and non-canonical Wnt signaling components in neurons, such as the co-receptor Ror2, were observed in the spinal cord of EAE mice, we postulated that the interplay between activated microglia and spinal neurons under EAE conditions is mediated through non-canonical Wnt signaling. EAE treatment up-regulated in vivo expression of non-canonical Wnt signaling components in spinal neurons through microglial activation. In accordance with the neuronal degeneration detected in the EAE spinal cord in vivo, co-culture of spinal neurons with microglia or the application of recombinant IL-1β up-regulated non-canonical Wnt signaling, and induced neuronal cell death, which was suppressed by the inhibition of the Wnt-Ror2 pathway. Ectopic non-canonical Wnt signaling aggravated the demyelinating pathology in another MS mouse model due to Wnt5a-induced neurodegeneration. The linkage between activated microglia and neuronal Wnt-Ror2 signaling may provide a possible candidate target for therapeutic approaches to demyelinating disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。