Exploring a Chemotactic Role for EVs from Progenitor Cell Populations of Human Exfoliated Deciduous Teeth for Promoting Migration of Naïve BMSCs in Bone Repair Process

探索人类脱落乳牙祖细胞群 EVs 的趋化作用,以促进骨修复过程中幼稚 BMSCs 的迁移

阅读:5
作者:Lin Luo, Steven J Avery, Rachel J Waddington

Abstract

Mobilization of naïve bone marrow mesenchymal stromal cells (BMSCs) is crucial to desired bone regeneration in both orthopedic and dental contexts. In such conditions, mesenchymal progenitor cell populations from human exfoliated deciduous teeth (SHEDs) present advantageous multipotent properties with easy accessibility which makes them a good candidate in both bone and periodontal tissue regeneration. Extracellular vesicles (EVs) are a functional membranous structure which could participate in multiple cell interactions and imitate the biological functions of their parenting cells largely. To assess their ability to mobilize naïve BMSCs in the bone repair process, Nanosight Tracking Analysis (NTA) and Enzyme-Linked Immunosorbent Assays (ELISA) were performed to illustrate the composition and functional contents of EV samples derived from SHEDs with different culturing time (24 h, 48 h, and 72 h). Afterwards, the Boyden chamber assay was performed to compare their capacity for mobilizing naïve BMSCs. One-way analysis of variance (ANOVA) with a post hoc Turkey test was performed for statistical analysis. SHEDs-derived EVs collected from 24 h, 48 h, and 72 h time points, namely, EV24, EV48, and EV72, were mainly secreted as exosomes and tended to reform into smaller size as a result of sonication indicated by NTA results. Moreover, different EV groups were found to be abundant with multiple growth factors including transforming growth factor-β1 (TGF-β1), platelet-derived growth factor (PDGF), insulin-like growth factor-1 (IGF-1), and fibroblast growth factor-2 (FGF-2) given the detections through ELISA. Boyden chamber assays implied the migratory efficiency of BMSCs driven by EVs at varying concentrations. However, the results showed that migration of BMSCs driven by different EV groups was not statistically significant even with chemotactic factors contained (P > 0.05). Taken together, these data suggest that EVs derived from SHEDs are secreted in functional forms and present a potential of mobilizing naïve BMSCs, which may propose their relevance in assisting bone regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。