MicroRNA Modification of Coxsackievirus B3 Decreases Its Toxicity, while Retaining Oncolytic Potency against Lung Cancer

柯萨奇病毒 B3 的 microRNA 修饰可降低其毒性,同时保留对肺癌的溶瘤效力

阅读:7
作者:Huitao Liu, Yuan Chao Xue, Haoyu Deng, Yasir Mohamud, Chen Seng Ng, Axel Chu, Chinten James Lim, William W Lockwood, William W G Jia, Honglin Luo

Abstract

We recently discovered that coxsackievirus B3 (CVB3) is a potent oncolytic virus against KRAS mutant lung adenocarcinoma. Nevertheless, the evident toxicity restricts the use of wild-type (WT)-CVB3 for cancer therapy. The current study aims to engineer the CVB3 to decrease its toxicity and to extend our previous research to determine its safety and efficacy in treating TP53/RB1 mutant small-cell lung cancer (SCLC). A microRNA-modified CVB3 (miR-CVB3) was generated via inserting multiple copies of tumor-suppressive miR-145/miR-143 target sequences into the viral genome. In vitro experiments revealed that miR-CVB3 retained the ability to infect and lyse KRAS mutant lung adenocarcinoma and TP53/RB1-mutant SCLC cells, but with a markedly reduced cytotoxicity toward cardiomyocytes. In vivo study using a TP53/RB1-mutant SCLC xenograft model demonstrated that a single dose of miR-CVB3 via systemic administration resulted in a significant tumor regression. Most strikingly, mice treated with miR-CVB3 exhibited greatly attenuated cardiotoxicities and decreased viral titers compared to WT-CVB3-treated mice. Collectively, we generated a recombinant CVB3 that is powerful in destroying both KRAS mutant lung adenocarcinoma and TP53/RB1-mutant SCLC, with a negligible toxicity toward normal tissues. Future investigation is needed to address the issue of genome instability of miR-CVB3, which was observed in ~40% of mice after a prolonged treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。