High iodine blocks a Notch/miR-19 loop activated by the BRAF(V600E) oncoprotein and restores the response to TGFβ in thyroid follicular cells

高碘阻断由 BRAF(V600E)癌蛋白激活的 Notch/miR-19 环路并恢复甲状腺滤泡细胞对 TGFβ 的反应

阅读:8
作者:Cesar Seigi Fuziwara, Edna Teruko Kimura

Background

Excess iodine inhibits thyroid follicular cell proliferation associated with TGFβ pathway activation, although thyroid cancers are frequently refractory to TGFβ signaling. The TGFβ pathway is predicted to be regulated by miR-17-92 cluster microRNAs. MicroRNAs are small noncoding RNAs that inhibit target mRNA translation and have emerged as potent modulators of tumorigenesis. Although the BRAF(V600E) mutation is the most prevalent alteration in thyroid cancer, the impact of iodine intake on BRAF-mediated oncogenesis remains unclear. Therefore, the

Conclusion

High iodine abrogates BRAF(V600E)-induced activation of miR-19, a newly identified Smad4 regulator, through Notch pathway inhibition and restores responsiveness to TGFβ signaling. Our results indicate that iodine exerts protective effects in thyroid cells, attenuating acute BRAF oncogene-mediated microRNA deregulation.

Methods

Rat thyroid follicular cells that conditionally express BRAF(V600E) under doxycycline stimulation (PC-BRAF(V600E)-6) were derived from the PCCl3 line. These cells were treated with doxycycline for two days, in the absence or presence of 10 μM sodium iodide. The thyroid cancer cell lines BCPAP and KTC2 were also analyzed. Expression of the miR-17-92 cluster and Notch1 was analyzed by quantitative polymerase chain reaction, and expression of these genes was modulated by anti-miR or anti-Notch1 siRNAs transfection. Protein expression was assessed by Western blot. Luciferase assays were used to quantify Smad4 3'-UTR/miR-19 interaction and Notch signaling activation. TGFβ responsiveness was evaluated by cell cycle analysis of TGFβ-treated cells.

Results

High iodine blocked BRAF(V600E)-induced upregulation of miR-17-92, including miR-19a/b. miR-17-92 promoter region analysis revealed a putative binding site for Hes1, a transcription factor responsive to Notch signaling. Notch-1 overexpression resulted in miR-19 upregulation in normal thyroid cells, while Notch-1 knockdown blocked BRAF-induced miR-19 expression. Moreover, in anaplastic thyroid cancer cells, Notch-1 knockdown reduced miR-19. Expression of BRAF(V600E) decreased Smad4 protein in normal thyroid cells. Smad4 was validated as a miR-19 target by luciferase assays, which revealed reduced luminescence associated with miR-19 interaction in Smad4 3'-UTR. Iodine treatment restored Smad4 levels in BRAF-activated cells, resulting in enhanced G1-cell cycle arrest in response to TGFβ. Moreover, this effect was mimicked in papillary thyroid cancer cells treated with anti-miR-19.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。