Moderately decreased maternal dietary energy intake during pregnancy reduces fetal skeletal muscle mitochondrial biogenesis in the pigs

怀孕期间适度减少母亲膳食能量摄入会降低猪胎儿骨骼肌线粒体的生物合成

阅读:4
作者:Tiande Zou, Bing Yu, Jie Yu, Xiangbing Mao, Ping Zheng, Jun He, Zhiqing Huang, Yue Liu, Daiwen Chen

Background

Mitochondria are of major importance in oocyte and early embryo, playing a key role in maintaining energy homeostasis. Epidemiological findings indicate that maternal undernutrition-induced mitochondrial dysfunction during pregnancy is associated with the development of metabolic disorders in offspring. Here, we investigated the effects of moderately decreased maternal energy intake during pregnancy on skeletal muscle mitochondrial biogenesis in fetal offspring with pig as a model.

Conclusions

The observed decrease in muscle mitochondrial biogenesis and antioxidant defense capacity suggests that moderately decreased maternal energy intake during pregnancy impairs mitochondrial function in fetal pigs.

Methods

Pregnant Meishan sows were allocated to a standard-energy (SE) intake group as recommended by the National Research Council (NRC; 2012) and a low-energy (LE) intake group. Fetal umbilical vein serum and longissimus muscle samples were collected for further analysis on day 90 of pregnancy.

Results

Sow and fetal weights and the concentrations of serum growth hormone (GH) and glucose were reduced in LE group. Maternal LE diet decreased the messenger RNA (mRNA) expression of genes involved in mitochondrial biogenesis and function such as peroxisome proliferator-activated receptor gamma coactivator 1α (PPARGC1A), nuclear respiratory factor 1 (NRF1), mitochondrial transcription factor A (TFAM), β subunit of mitochondrial H(+)-ATP synthase (ATB5B), sirtuin 1 (Sirt1), and citrate synthase (CS). The protein expression of PPARGC1A and Sirt1, intracellular NAD(+)-to-NADH ratio, and CS activity was reduced in LE group, and accordingly, mitochondrial DNA (mtDNA) content was decreased. Moreover, copper/zinc superoxide dismutase (CuZn-SOD) expression at both mRNA and protein levels and SOD and catalase (CAT) activities were reduced in LE group as well. Conclusions: The observed decrease in muscle mitochondrial biogenesis and antioxidant defense capacity suggests that moderately decreased maternal energy intake during pregnancy impairs mitochondrial function in fetal pigs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。