Ablation of Proton/Glucose Exporter SLC45A2 Enhances Melanosomal Glycolysis to Inhibit Melanin Biosynthesis and Promote Melanoma Metastasis

质子/葡萄糖输出蛋白SLC45A2的消融可增强黑素体糖酵解,从而抑制黑色素生物合成并促进黑色素瘤转移

阅读:6
作者:Ye Liu, Wenna Chi, Lei Tao, Guoqiang Wang, R N V Krishna Deepak, Linlin Sheng, Taiqi Chen, Yaqian Feng, Xizhi Cao, Lili Cheng, Xinbin Zhao, Xiaohui Liu, Haiteng Deng, Hao Fan, Peng Jiang, Ligong Chen

Abstract

Sequence variation in SLC45A2 are responsible for oculocutaneous albinism type 4 in many species and are associated with melanoma susceptibility, but the molecular mechanism is unclear. In this study, we used Slc45a2-deficient melanocyte and mouse models to elucidate the roles of SLC45A2 in melanogenesis and melanoma metastasis. We found that the acidified cellular environment impairs the activity of key melanogenic enzyme tyrosinase in Slc45a2-deficient melanocytes. SLC45A2 is identified as a proton/glucose exporter in melanosomes, and its ablation increases the acidification of melanosomal pH through enhanced glycolysis. Intriguingly, 13C-glucose-labeled metabolic flux and biochemical assays show that melanosomes are active glucose-metabolizing organelles, indicating that elevated glycolysis mainly occurs in melanosomes owing to Slc45a2 deficiency. Moreover, Slc45a2 deficiency significantly upregulates the activities of glycolytic enzymes and phosphatidylinositol 3-kinase/protein kinase B signaling to promote glycolysis-dependent survival and metastasis of melanoma cells. Collectively, our study reveals that the proton/glucose exporter SLC45A2 mediates melanin synthesis and melanoma metastasis primarily by modulating melanosomal glucose metabolism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。