Radiosensitizing effects of CDK4/6 inhibitors in hormone receptor-positive and HER2-negative breast cancer mediated downregulation of DNA repair mechanism and NF-κB-signaling pathway

CDK4/6 抑制剂对激素受体阳性和 HER2 阴性乳腺癌的放射增敏作用介导 DNA 修复机制和 NF-κB 信号通路的下调

阅读:6
作者:Wen-Chi Yang, Ming-Feng Wei, Yi-Hsuan Lee, Chiun-Sheng Huang, Sung-Hsin Kuo

Abstract

CDK4/6 inhibitors combined with endocrine therapy prolonged survival in hormone receptor (HR)-positive and HER2-negative advanced breast cancer. We investigated whether CDK4/6 inhibitors enhance radiosensitivity and their underlying mechanisms of this subtype of breast cancer. In vitro and in vivo experiments were conducted using two HR-positive and HER2-negative breast cancer cell lines (MCF-7 and T-47D), CDK4/6 inhibitors (ribociclib and palbociclib) and radiotherapy (RT) to assess the biological functions and mechanisms. The radiation-enhancing effect was assessed using clonogenic assays; γH2AX and 53BP1 levels were assessed by immunofluorescence to evaluate DNA damage. The levels of phospho (p)-ERK, c-Myc, and DNA-double strand break (DSB)-related molecules, p-DNA-PKcs, Rad51, and p-ATM, were assessed by western blotting. We used an NF-κB p65 transcription factor assay kit to evaluate NF-κB activity. We evaluated the antitumor effect of the combination of RT and ribociclib through the MCF-7 orthotopic xenograft model. The synergistic effects of combining RT with ribociclib and palbociclib pretreatment were demonstrated by clonogenic assay. CDK4/6 inhibitors synergistically increased the numbers of RT-induced γH2AX and 53BP1, downregulated the expression of p-DNA-PKcs, Rad51 and p-ATM activated by RT, and reduced RT-triggering p-ERK expression, NF-κB activation, and its down-streaming gene, c-Myc. Combined ribociclib and RT reduced the growth of MCF-7 cell xenograft tumors, and downregulated the immunohistochemical expression of p-ERK, p-NF-κB p65, and c-Myc compared to that in the control group. Combining CDK4/6 inhibitors enhanced radiosensitivity of HR-positive and HER2-negative breast cancer cells at least by reducing DNA-DSB repair and weakening the activation of ERK and NF-κB signaling by RT.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。