Loss of UCP1 function augments recruitment of futile lipid cycling for thermogenesis in murine brown fat

UCP1 功能丧失增强了小鼠棕色脂肪中无用脂质循环的募集,从而促进了产热

阅读:5
作者:Josef Oeckl, Petra Janovska, Katerina Adamcova, Kristina Bardova, Sarah Brunner, Sebastian Dieckmann, Josef Ecker, Tobias Fromme, Jiri Funda, Thomas Gantert, Piero Giansanti, Maria Soledad Hidrobo, Ondrej Kuda, Bernhard Kuster, Yongguo Li, Radek Pohl, Sabine Schmitt, Sabine Schweizer, Hans Zischka, 

Conclusion

Our results suggest an important role for futile lipid cycling in adaptive thermogenesis and total energy expenditure.

Methods

In this study, we explore different potential sources of UCP1-independent thermogenesis and identify a futile ATP-consuming triglyceride/fatty acid cycle as the main contributor to cellular heat production in brown adipocytes lacking UCP1. We uncover the mechanism on a molecular level and pinpoint the key enzymes involved using pharmacological and genetic interference.

Objective

Classical ATP-independent non-shivering thermogenesis enabled by uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) is activated, but not essential for survival, in the cold. It has long been suspected that futile ATP-consuming substrate cycles also contribute to thermogenesis and can partially compensate for the genetic ablation of UCP1 in mouse models. Futile ATP-dependent thermogenesis could thereby enable survival in the cold even when brown fat is less abundant or missing.

Results

ATGL is the most important lipase in terms of releasing fatty acids from lipid droplets, while DGAT1 accounts for the majority of fatty acid re-esterification in UCP1-ablated brown adipocytes. Furthermore, we demonstrate that chronic cold exposure causes a pronounced remodeling of adipose tissues and leads to the recruitment of lipid cycling capacity specifically in BAT of UCP1-knockout mice, possibly fueled by fatty acids from white fat. Quantification of triglyceride/fatty acid cycling clearly shows that UCP1-ablated animals significantly increase turnover rates at room temperature and below.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。