Knockdown of long non-coding RNA SOX21-AS1 attenuates amyloid-β-induced neuronal damage by sponging miR-107

长链非编码 RNA SOX21-AS1 的敲低可通过吸收 miR-107 减轻淀粉样β蛋白引起的神经元损伤

阅读:5
作者:Wanru Xu, Kai Li, Qian Fan, Biyun Zong, Ling Han

Background

Alzheimer's disease (AD), which has no effective drugs to delay or prevent its progression, is a multifactorial complex neurodegenerative disease. Long non-coding RNA SOX21 antisense RNA1 (SOX21-AS1) is associated with the development of AD, but the underlying molecular mechanism of SOX21-AS1 in AD is still largely unclear.

Conclusion

SOX21-AS1 silencing could attenuate Aβ1-42-induced neuronal damage by sponging miR-107, which provided a possible strategy for the treatment of AD.

Methods

To construct the AD model, SH-SY5Y and SK-N-SH cells were treated with amyloid-β1-42 (Aβ1-42). Quantitative real-time polymerase chain reaction (qRT-PCR) was executed to detect the expression of SOX21-AS1 and miRNA-107. Western blot analysis was utilized to assess the levels of phosphorylated Tau (p-Tau). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) or flow cytometry assay was employed to determine the viability and apoptosis of SH-SY5Y and SK-N-SH cells. The relationship between SOX21-AS1 and miRNA-107 was verified with the dual-luciferase reporter assay.

Results

SOX21-AS1 expression was augmented while miR-107 expression was decreased in Aβ1-42-treated SH-SY5Y and SK-N-SH cells. Moreover, Aβ1-42 elevated the levels of p-Tau and impeded viability and induced apoptosis of SH-SY5Y and SK-N-SH cells. Also, SOX21-AS1 silencing attenuated Aβ1-42 mediated the levels of p-Tau, viability, and apoptosis of SH-SY5Y and SK-N-SH cells. Importantly, SOX21-AS1 acted as a sponge for miR-107 in SH-SY5Y and SK-N-SH cells. Furthermore, the increase in p-Tau levels and apoptosis and the repression of viability of Aβ1-42-treated SH-SY5Y and SK-N-SH cells mediated by miR-107 inhibition were partly recovered by SOX21-AS1 depletion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。