Enhancement of sialylation in rIgG in glyco-engineered Chinese hamster ovary cells

糖工程中国仓鼠卵巢细胞中 rIgG 唾液酸化的增强

阅读:7
作者:Thi Sam Nguyen, Ryo Misaki, Takao Ohashi, Kazuhito Fujiyama

Abstract

Since about 70% of commercial biopharmaceutical products have been produced in Chinese hamster ovary (CHO) cells, this cell line is undeniably a workhorse for biopharmaceuticals production. Meanwhile, sialic acid terminals were reported to affect anti-inflammatory activity, antibody-dependent cellular cytotoxicity efficacy of IgG antibodies. Taking these findings together, we aimed to establish CHO cell lines that highly produce sialic acid terminals by overexpressing two N-acetylneuraminic acid-based key enzymes, α(2,6)-sialyltransferase and UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase using dihydrofolate reductase/methotrexate gene amplification method. Indeed, the number of total sialic acid terminal glycan structures increased tremendously, by 12-fold compared to the wild type in total protein extracts. With the methotrexate supplementation, a targeted cell line, CHOmt17-100, showed up to 1.4 times more sialylated structures of glycoforms in total proteins. Interestingly, immunoglobulin G, used as the model protein in CHOmt17-100, showed about 53% sialylated structures in its glycoforms. These resultant sialylated glycans exhibited more than approximately 14.5 times increase as compared to that of the wild type. Moreover, the resultant glycan structures mostly had N-acetylneuraminic acid terminals, while N-glycolylneuraminic acid terminal composition remained less than 5% as compared to the wild type. Engineered antibodies derived from CHO cell lines that produce high levels of sialic acid will contribute to the examination of glycoforms' efficacy and usefulness toward bio-better products.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。