A saturation mutagenesis screen uncovers resistant and sensitizing secondary KRAS mutations to clinical KRASG12C inhibitors

饱和诱变筛选揭示了对临床 KRASG12C 抑制剂产生耐药性和致敏性的继发性 KRAS 突变

阅读:5
作者:Siyu Feng, Marinella G Callow, Jean-Philippe Fortin, Zia Khan, David Bray, Mike Costa, Zhen Shi, Weiru Wang, Marie Evangelista

Abstract

Mutant-specific inhibitors of KRASG12C, such as AMG510 (sotorasib) and MRTX849 (adagrasib), offer the unprecedented opportunity to inhibit KRAS, the most frequently mutated and heretofore undruggable oncoprotein. While clinical data are still limited, on-target mutations in KRASG12C at position 12 and other sites are emerging as major drivers of clinical relapse. We identified additional mutations in KRASG12C that impact inhibitor sensitivity through a saturation mutagenesis screen in the KRASG12C NCI-H358 non–small-cell lung cancer (NSCLC) cell line. We also identified individuals in population genetic databases harboring these resistance mutations in their germline and in tumors, including a subset that co-occur with KRASG12C, indicating that these mutations may preexist in patients treated with KRASG12C inhibitors. Notably, through structural modeling, we found that one such mutation (R68L) interferes with the critical protein–drug interface, conferring resistance to both inhibitors. Finally, we uncovered a mutant (S17E) that demonstrated a strong sensitizing phenotype to both inhibitors. Functional studies suggest that S17E sensitizes KRASG12C cells to KRASG12C inhibition by impacting signaling through PI3K/AKT/mTOR but not the MAPK signaling pathway. Our studies highlight the utility of unbiased mutation profiling to understand the functional consequences of all variants of a disease-causing genetic mutant and predict acquired resistant mutations in the targeted therapeutics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。