Skeletal restoration by phosphodiesterase 5 inhibitors in osteopenic mice: Evidence of osteoanabolic and osteoangiogenic effects of the drugs

磷酸二酯酶 5 抑制剂对骨质疏松小鼠的骨骼修复:药物的骨合成代谢和骨血管生成作用的证据

阅读:6
作者:Subhashis Pal, Mamunur Rashid, Sandeep Kumar Singh, Konica Porwal, Priya Singh, Riyazuddin Mohamed, Jiaur R Gayen, Muhammad Wahajuddin, Naibedya Chattopadhyay

Abstract

Phosphodiesterases (PDEs) hydrolyze cyclic nucleotides and thereby regulate diverse cellular functions. The reports on the skeletal effects of PDE inhibitors are conflicting. Here, we screened 17 clinically used non-xanthine PDE inhibitors (selective and non-selective) using mouse calvarial osteoblasts (MCO) where the readout was osteoblast differentiation. From this screen, we identified sildenafil and vardenafil (both PDE5 inhibitors) having the least osteogenic EC50. Both drugs significantly increased vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2) expressions in MCO and the nitric oxide synthase inhibitor L-NAME completely blocked VEGF expression induced by these drugs. Sunitinib, a tyrosine receptor kinase inhibitor that also blocks VEGFR2 blocked sildenafil-/vardenafil-induced osteoblast differentiation. At half of their human equivalent doses, i.e. 6.0 mg/kg sildenafil and 2.5 mg/kg vardenafil, the maximum bone marrow level of sildenafil was 32% and vardenafil was 21% of their blood levels. At these doses, both drugs enhanced bone regeneration at the femur osteotomy site and completely restored bone mass, microarchitecture, and strength in OVX mice. Furthermore, both drugs increased surface referent bone formation and serum bone formation marker (P1NP) without affecting the resorption marker (CTX-1). Both drugs increased the expression of VEGF and VEGFR2 in bones and osteoblasts and increased skeletal vascularity. Sunitinib completely blocked the bone restorative and vascular effects of sildenafil and vardenafil in OVX mice. Taken together, our study suggested that sildenafil and vardenafil at half of their adult human doses completely reversed osteopenia in OVX mice by an osteogenic mechanism that was associated with enhanced skeletal vascularity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。