Morphological differences of primary cilia between human induced pluripotent stem cells and their parental somatic cells

人类诱导性多能干细胞与其亲本体细胞初级纤毛的形态差异

阅读:4
作者:Bhavik B Nathwani, Christine H Miller, Tung-Lin Tony Yang, Jamie Lee Solimano, Jung-Chi Liao

Abstract

Human induced pluripotent stem cell (hiPSC) reprogramming possesses enormous potential in stem cell research and disease modeling. Chemical and mechanical signaling has been implicated in the maintenance of pluripotency of hiPSCs, as well as their differentiation pathways toward various lineages. Primary cilia have been shown to play a critical role in mechanochemical signaling across a wide spectrum of cell types. The functions of primary cilia in hiPSCs and their characteristic changes during the reprogramming process remain largely vague. This work focused on understanding how reprogramming affects the mechanical characteristics of primary cilia. Using immunofluorescence imaging assays, we validated the presence of primary cilia on reprogrammed cells. These reprogrammed cells had high expression levels of pluripotency markers, Nanog and Cripto, shown by quantitative polymerase chain reaction assays. We also found high expression of hedgehog signaling proteins Patched1 (Ptch1), Smoothened (Smo), Gli1, and Gli2 in reprogrammed cells. Stimulation of the hedgehog pathway resulted in the concerted movement of Ptch1 out of the cilia and Smo into the cilia, implying that the cilia on iPSCs contain functioning hedgehog machinery. The mean length of primary cilia in reprogrammed cells was shorter than those of parental human fibroblasts. Morphometric analyses revealed that reprogramming resulted in an increase in the curvature of primary cilia from ∼0.015 to 0.064 μm(-1), indicating an underlying approximately fourfold decrease in their rigidity, and a decrease in length of primary cilia from ∼2.38 to ∼1.45 μm. Furthermore, reprogramming resulted in fewer primary cilia displaying kinked geometries.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。