Apocynin prevents cigarette smoking-induced loss of skeletal muscle mass and function in mice by preserving proteostatic signalling

阿扑西宁通过保留蛋白质稳态信号来防止小鼠因吸烟引起的骨骼肌质量和功能的损失

阅读:4
作者:Stanley M H Chan, Ivan Bernardo, Chanelle Mastronardo, Kevin Mou, Simone N De Luca, Huei Jiunn Seow, Aleksandar Dobric, Kurt Brassington, Stavros Selemidis, Steven Bozinovski, Ross Vlahos

Background and purpose

Skeletal muscle dysfunction is a major comorbidity of chronic obstructive pulmonary disease (COPD). This type of muscle dysfunction may be a direct consequence of oxidative insults evoked by cigarette smoke (CS) exposure. The present study examined the effects of a potent Nox inhibitor and reactive oxygen species (ROS) scavenger, apocynin, on CS-induced muscle dysfunction. Experimental approach: Male BALB/c mice were exposed to either room air (sham) or CS generated from nine cigarettes per day, 5 days a week for 8 weeks, with or without the coadministration of apocynin (5 mg·kg-1 , i.p.). C2C12 myotubes exposed to either hydrogen peroxide (H2 O2 ) or water-soluble cigarette smoke extract (CSE) with or without apocynin (500 nM) were used as an experimental model in vitro. Key

Purpose

Skeletal muscle dysfunction is a major comorbidity of chronic obstructive pulmonary disease (COPD). This type of muscle dysfunction may be a direct consequence of oxidative insults evoked by cigarette smoke (CS) exposure. The present study examined the effects of a potent Nox inhibitor and reactive oxygen species (ROS) scavenger, apocynin, on CS-induced muscle dysfunction. Experimental approach: Male BALB/c mice were exposed to either room air (sham) or CS generated from nine cigarettes per day, 5 days a week for 8 weeks, with or without the coadministration of apocynin (5 mg·kg-1 , i.p.). C2C12 myotubes exposed to either hydrogen peroxide (H2 O2 ) or water-soluble cigarette smoke extract (CSE) with or without apocynin (500 nM) were used as an experimental model in vitro. Key

Results

Eight weeks of CS exposure caused muscle dysfunction in mice, reflected by 10% loss of muscle mass and 54% loss of strength of tibialis anterior which were prevented by apocynin administration. In C2C12 myotubes, direct exposure to H2 O2 or CSE caused myofibre wasting, accompanied by ~50% loss of muscle-derived insulin-like growth factor (IGF)-1 and two-fold induction of Cybb, independent of cellular inflammation. Expression of myostatin and MAFbx, negative regulators of muscle mass, were up-regulated under H2 O2 but not CSE conditions. Apocynin treatment abolished CSE-induced Cybb expression, preserving muscle-derived IGF-1 expression and signalling pathway downstream of mammalian target of rapamycin (mTOR), thereby preventing myofibre wasting.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。