The mTOR pathway is necessary for survival of mice with short telomeres

mTOR 通路是端粒较短的小鼠生存所必需的

阅读:5
作者:Iole Ferrara-Romeo, Paula Martinez, Sarita Saraswati, Kurt Whittemore, Osvaldo Graña-Castro, Lydia Thelma Poluha, Rosa Serrano, Elena Hernandez-Encinas, Carmen Blanco-Aparicio, Juana Maria Flores, Maria A Blasco

Abstract

Telomerase deficiency leads to age-related diseases and shorter lifespans. Inhibition of the mechanistic target of rapamycin (mTOR) delays aging and age-related pathologies. Here, we show that telomerase deficient mice with short telomeres (G2-Terc-/-) have an hyper-activated mTOR pathway with increased levels of phosphorylated ribosomal S6 protein in liver, skeletal muscle and heart, a target of mTORC1. Transcriptional profiling confirms mTOR activation in G2-Terc-/- livers. Treatment of G2-Terc-/- mice with rapamycin, an inhibitor of mTORC1, decreases survival, in contrast to lifespan extension in wild-type controls. Deletion of mTORC1 downstream S6 kinase 1 in G3-Terc-/- mice also decreases longevity, in contrast to lifespan extension in single S6K1-/- female mice. These findings demonstrate that mTOR is important for survival in the context of short telomeres, and that its inhibition is deleterious in this setting. These results are of clinical interest in the case of human syndromes characterized by critically short telomeres.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。