Generation of a conditional Flpo/FRT mouse model expressing constitutively active TGFβ in fibroblasts

建立在成纤维细胞中表达组成性活性 TGFβ 的条件性 Flpo/FRT 小鼠模型

阅读:7
作者:Victoire Cardot-Ruffino, Véronique Chauvet, Cassandre Caligaris, Adrien Bertrand-Chapel, Nicolas Chuvin, Roxane M Pommier, Ulrich Valcourt, David F Vincent, Sylvie Martel, Sophie Aires, Bastien Kaniewski, Pierre Dubus, Philippe Cassier, Stéphanie Sentis #, Laurent Bartholin #

Abstract

Transforming growth factor (TGFβ) is a secreted factor, which accumulates in tissues during many physio- and pathological processes such as embryonic development, wound healing, fibrosis and cancer. In order to analyze the effects of increased microenvironmental TGFβ concentration in vivo, we developed a conditional transgenic mouse model (Flpo/Frt system) expressing bioactive TGFβ in fibroblasts, a cell population present in the microenvironment of almost all tissues. To achieve this, we created the genetically-engineered [Fsp1-Flpo; FSFTGFβCA] mouse model. The Fsp1-Flpo allele consists in the Flpo recombinase under the control of the Fsp1 (fibroblast-specific promoter 1) promoter. The FSFTGFβCA allele consists in a transgene encoding a constitutively active mutant form of TGFβ (TGFβCA) under the control of a Frt-STOP-Frt (FSF) cassette. The FSFTGFβCA allele was created to generate this model, and functionally validated by in vitro, ex vivo and in vivo techniques. [Fsp1-Flpo; FSFTGFβCA] animals do not present any obvious phenotype despite the correct expression of TGFβCA transgene in fibroblasts. This [Fsp1-Flpo; FSFTGFβCA] model is highly pertinent for future studies on the effect of increased microenvironmental bioactive TGFβ concentrations in mice bearing Cre-dependent genetic alterations in other compartments (epithelial or immune compartments for instance). These dual recombinase system (DRS) approaches will enable scientists to study uncoupled spatiotemporal regulation of different genetic alterations within the same mouse, thus better replicating the complexity of human diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。