Examining Hemin and its Derivatives: Induction of Heme-Oxygenase-1 Activity and Oxidative Stress in Breast Cancer Cells through Collaborative Experimental Analysis and Molecular Dynamics Simulations

检查血红素及其衍生物:通过协作实验分析和分子动力学模拟诱导乳腺癌细胞中的血红素加氧酶-1 活性和氧化应激

阅读:6
作者:Amir M Alsharabasy, Panagiotis I Lagarias, Konstantinos D Papavasileiou, Antreas Afantitis, Pau Farràs, Sharon Glynn, Abhay Pandit

Abstract

Hemin triggers intracellular reactive oxygen species (ROS) accumulation and enhances heme oxygenase-1 (HOX-1) activity, indicating its potential as an anticancer agent, though precise control of its intracellular levels is crucial. The study explores the impact of hemin and its derivatives, hemin-tyrosine, and hemin-styrene (H-Styr) conjugates on migration, HOX-1 expression, specific apoptosis markers, mitochondrial functions, and ROS generation in breast cancer cells. Molecular docking and dynamics simulations were used to understand the interactions among HOX-1, heme, and the compounds. Hemin outperforms its derivatives in inducing HOX-1 expression, exhibiting pro-oxidative effects and reducing cell migration. Molecular simulations show that heme binds favorably to HOX-1, followed by the other compounds, primarily through van der Waals and electrostatic forces. However, only van der Waals forces determine the H-Styr complexation. These interactions, influenced by metalloporphyrin characteristics, provide insights into HOX-1 regulation and ROS generation, potentially guiding the development of breast cancer therapies targeting oxidative stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。